3.228 \(\int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=82 \[ \frac{2 a (A+3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{2 A \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d \sqrt{\sec (c+d x)}} \]

[Out]

(2*a*(A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*A*Sqrt[a + a*Sec[c + d*x]]
*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.158257, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.057, Rules used = {4013, 3804} \[ \frac{2 a (A+3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{2 A \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(2*a*(A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*A*Sqrt[a + a*Sec[c + d*x]]
*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 A \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{1}{3} (A+3 B) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a (A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{2 A \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.218533, size = 56, normalized size = 0.68 \[ \frac{2 \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} (A \cos (c+d x)+2 A+3 B)}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(2*(2*A + 3*B + A*Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.307, size = 75, normalized size = 0.9 \begin{align*} -{\frac{ \left ( -2+2\,\cos \left ( dx+c \right ) \right ) \left ( A\cos \left ( dx+c \right ) +2\,A+3\,B \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{3\,d\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x)

[Out]

-2/3/d*(-1+cos(d*x+c))*(A*cos(d*x+c)+2*A+3*B)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^
(3/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 2.00967, size = 181, normalized size = 2.21 \begin{align*} \frac{\sqrt{2}{\left (3 \, \cos \left (\frac{2}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) - 3 \, \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) \sin \left (\frac{2}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) + 2 \, \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 3 \, \sin \left (\frac{1}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right )\right )} A \sqrt{a} + 12 \, \sqrt{2} B \sqrt{a} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/6*(sqrt(2)*(3*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*
d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*sin(1/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A*sqrt(a) + 12*sqrt(2)*B*sqrt(a)*sin(1/2*d*x + 1/2*c))/
d

________________________________________________________________________________________

Fricas [A]  time = 0.460212, size = 197, normalized size = 2.4 \begin{align*} \frac{2 \,{\left (A \cos \left (d x + c\right )^{2} +{\left (2 \, A + 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right ) + d\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2/3*(A*cos(d*x + c)^2 + (2*A + 3*B)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos
(d*x + c) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \left (A + B \sec{\left (c + d x \right )}\right )}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)